The Escherichia coli Small Protein MntS and Exporter MntP Optimize the Intracellular Concentration of Manganese

نویسندگان

  • Julia E. Martin
  • Lauren S. Waters
  • Gisela Storz
  • James A. Imlay
چکیده

Escherichia coli does not routinely import manganese, but it will do so when iron is unavailable, so that manganese can substitute for iron as an enzyme cofactor. When intracellular manganese levels are low, the cell induces the MntH manganese importer plus MntS, a small protein of unknown function; when manganese levels are high, the cell induces the MntP manganese exporter and reduces expression of MntH and MntS. The role of MntS has not been clear. Previous work showed that forced MntS synthesis under manganese-rich conditions caused bacteriostasis. Here we find that when manganese is scarce, MntS helps manganese to activate a variety of enzymes. Its overproduction under manganese-rich conditions caused manganese to accumulate to very high levels inside the cell; simultaneously, iron levels dropped precipitously, apparently because manganese-bound Fur blocked the production of iron importers. Under these conditions, heme synthesis stopped, ultimately depleting cytochrome oxidase activity and causing the failure of aerobic metabolism. Protoporphyrin IX accumulated, indicating that the combination of excess manganese and iron deficiency had stalled ferrochelatase. The same chain of events occurred when mutants lacking MntP, the manganese exporter, were exposed to manganese. Genetic analysis suggested the possibility that MntS exerts this effect by inhibiting MntP. We discuss a model wherein during transitions between low- and high-manganese environments E. coli uses MntP to compensate for MntH overactivity, and MntS to compensate for MntP overactivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and Characterization of a Putative Manganese Export Protein in Vibrio cholerae.

UNLABELLED Manganese plays an important role in the cellular physiology and metabolism of bacterial species, including the human pathogen Vibrio cholerae The intracellular level of manganese ions is controlled through coordinated regulation of the import and export of this element. We have identified a putative manganese exporter (VC0022), named mneA (manganese exporter A), which is highly cons...

متن کامل

Expression of Recombinant Protein B Subunit Pili from Vibrio Cholera

Background & Aims: Vibrio cholerae is a gram-negative bacterial pathogen that causes cholera disease. Following ingestion by a host and entry into the upper intestine, V. cholera colonizes and begins to emit enterotoxin. One of the most pathogenic factors of Vibrio cholera is toxin-coregulated pili (TCP). ToxinCoregulated pili is as the primary factor requiered for the colonization and insisten...

متن کامل

Production, Purification and Characterization of Chicken Egg Yolk Monoclonal Antibody Against Colonization factor antigen -1 of Enterotoxigenic Escherichia coli Causing Diarrhea

Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in both humans and animals. The contaminated food and water are the most common vehicles for ETEC infection. The colonization factor antigen (CFA-1) is a fimbriae protein that promotes adherence of the ETEC strain to the epithelium of the small intestine of the host. In this study IgY proteins were produced against the CFA-1 of ETEC in imm...

متن کامل

Fuzzy Hybrid least-Squares Regression Approach to Estimating the amount of Extra Cellular Recombinant Protein A from Escherichia coli BL21

Introduction: Immune Protein A is a component with a vast spectrum of biochemical, biological and medical usages. The coding gene of this protein was extracted from Staphylococcus aureus and was cloned and expressed in Escherichia coli bacteria. Suitable statistical methods are utilized to optimize expression conditions  for evaluating experiment accuracy , guarantee the accuracy of subsequent ...

متن کامل

Determination of the optimal conditions of cloning Aerolysin gene from the common carp pathogen Aeromonas hydrophila in Escherichia coli BL21

Aeromonas hydrophila is a gram-negative bacterium which associated with gastrointestinal diseases and septicaemia. This pathogenic bacterium has several virulence factors ranging from pili to the excreted protein which called (Aerolysin) with minor and major effects, respectively. Additionally, Aeromonas hydrophila is a widely distributed bacterium that commonly causes ulcers in cyprinid fish s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015